The Gotzmann Coefficients of Hilbert Functions

نویسندگان

  • JEAMAN AHN
  • YONG SU SHIN
چکیده

Abstract. In this paper we investigate some algebraic and geometric consequences which arise from an extremal bound on the Hilbert function of the general hyperplane section of a variety (Green’s Hyperplane Restriction Theorem). These geometric consequences improve some results in this direction first given by Green and extend others by Bigatti, Geramita, and Migliore. Other applications of our detailed investigation of how the Hilbert polynomial is written as a sum of binomials, are to conditions that must be satisfied by a polynomial if it is to be the Hilbert polynomial of a non-degenerate integral subscheme of Pn (a problem posed by R. Stanley). We also give some new restrictions on the Hilbert function of a zero dimensional reduced scheme with the Uniform Position Property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gotzmann Ideals of the Polynomial Ring

Let A = K[x1, . . . , xn] denote the polynomial ring in n variables over a field K. We will classify all the Gotzmann ideals of A with at most n generators. In addition, we will study Hilbert functions H for which all homogeneous ideals of A with the Hilbert function H have the same graded Betti numbers. These Hilbert functions will be called inflexible Hilbert functions. We introduce the notio...

متن کامل

5 S ep 2 00 6 The Hilbert functions which force the Weak Lefschetz Property

The purpose of this note is to characterize the finite Hilbert functions which force all of their artinian algebras to enjoy the Weak Lefschetz Property (WLP). Curiously, they turn out to be exactly those (characterized by Wiebe in [W i]) whose Gotzmann ideals have the WLP. This implies that, if a Gotzmann ideal has the WLP, then all algebras with the same Hilbert function (and hence lower Bett...

متن کامل

Se p 20 06 The Hilbert functions which force the Weak Lefschetz Property

The purpose of this note is to characterize the finite Hilbert functions which force all of their artinian algebras to enjoy the Weak Lefschetz Property (WLP). Curiously, they turn out to be exactly those (characterized by Wiebe in [W i]) whose Gotzmann ideals have the WLP. This implies that, if a Gotzmann ideal has the WLP, then all algebras with the same Hilbert function (and hence lower Bett...

متن کامل

G-frames in Hilbert Modules Over Pro-C*-‎algebras

G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...

متن کامل

The Hilbert functions which force the Weak Lefschetz Property

The purpose of this note is to characterize the finite Hilbert functions which force all of their artinian algebras to enjoy the Weak Lefschetz Property (WLP). Curiously, they turn out to be exactly those (characterized by Wiebe in [Wi]) whose Gotzmann ideals have the WLP. This implies that, if a Gotzmann ideal has the WLP, then all algebras with the same Hilbert function (and hence lower Betti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008